myudp_hash是一个具有128项的哈希数组,每一项都是一个UDPsocket的链表,每个UDPsocket以自己的源地址端口号为哈希主键插入这个数组。源地址端口可以是用户自己指定的,也可以是由内核自动分配的。

内核自动分配的源端口号有一个范围,这个范围段似乎是由系统的内存大小决定的具体有待进一步分析),如果内存大(似乎是有高端内存可用),范围段是32768-61000,否则就是1024-4999。udp_port_rover是一个全局变量,初始值为范围段的下限,每次新分配端口,记录下新分配的端口号,下一次再分配时,在前一次的基础上加1,然后查询对应的myudp_hash中的项,如果该项的链表不为空,则找下一项,直至遍历整个数组,如果为空,则分配成功。所以,当连续分配128个端口后数组中的128项中,链表全不为空),这个查询必然失败,最后遍历数组完成时,得到的端口号必然是前一次分配的端口号加127,然后,端口号每次加128,再查询对应的数组项,看该端口号有没有被使用掉。

这个描述可能有点模糊,简单总结一下就是:每次分配一个端口号,先在前一次分配值的基础上以1为步进值递增,如果对应的哈希数组中的链表为空,则肯定没有被使用过,直接使用。如果遍历完整个哈希表都没有空的链表,则要查询链表中的每一项,以得到未使用的端口。

用户自己指定一个端口,则我们到对应的哈希数组中的链表查询,如果已被使用,并且不能重用,则分配端口号失败。对用户自己指定的端口,没有范围段的限制。这个一般用于服务端,而自动分配端口用于客户端。

绑定完成后,myinet_sendmsg会调用myudp_sendmsg,它与myraw_sendmsg所执行的操作相差并不多。先查询输出路由,然后添加协议首部,最后发送数据包。与raw相比,udp要在IP首部前添加一个UDP首部。以下是UDP首部的定义:

structudphdr{
__u16source;//发送端端口号。
__u16dest;//目的端端口号。
__u16len;//UDP长度。
__u16check;//UDP检验和。
};

UDP协议是一个传输层协议,与下层的网络层协议相比,它不仅需要知道数据传输的两端的主机,还需要知道是主机上的哪个进程在进行数据传输,端口号其实就是用于标识发送进程和接收进程的。UDP长度是UDP头加上UDP数据的长度不包括IP首部)。UDP检验和覆盖UDP首部和UDP数据。

由于UDP数据报在未连接的socket上进行发送,所以每次进入myraw_sendmsg,都要进行输出路由的查询,以确定源地址和目的地址。但我们知道,路由是有缓存的,所以,并没有太多的额外开销。认为在未连接的socket上发送UDP数据报开销要大的观点并不完全正确。


相关内容