调试内核代码

或许,内核中最常见的调试方法就是打印。如果你愿意,你可以使用普通的printk() 假定使用KERN_DEBUG日志等级)。然而,那儿还有更好的办法。如果你正在写一个设备驱动,这个设备驱动有它自己的“struct device”,可以使用pr_debug()或者dev_dbg():它们支持动态调试dyndbg)特性,并可以根据需要启用或者禁用请查阅Documentation/dynamic-debug-howto.txt)。对于单纯的开发消息,使用pr_devel(),除非设置了DEBUG,否则什么都不会做。要为我们的模块启用DEBUG,请添加以下行到Makefile中:

CFLAGS_reverse.o := -DDEBUG

完了之后,使用dmesg来查看pr_debug()pr_devel()生成的调试信息。 或者,你可以直接发送调试信息到控制台。要想这么干,你可以设置console_loglevel内核变量为8或者更大的值echo 8 /proc/sys/kernel/printk),或者在高日志等级,如KERN_ERR,来临时打印要查询的调试信息。很自然,在发布代码前,你应该移除这样的调试声明。

注意内核消息出现在控制台,不要在Xterm这样的终端模拟器窗口中去查看;这也是在内核开发时,建议你不在X环境下进行的原因。

惊喜,惊喜!

编译模块,然后加载进内核:

  1. $ make$ sudo insmod reverse.ko buffer_size=2048$ lsmodreverse 2419 0$ ls -l /dev/reversecrw-rw-rw- 1 root root 10, 58 Feb 22 15:53 /dev/reverse

一切似乎就位。现在,要测试模块是否正常工作,我们将写一段小程序来翻转它的第一个命令行参数。main()再三检查错误)可能看上去像这样:

  1. int fd = open("/dev/reverse", O_RDWR);write(fd, argv[1], strlen(argv[1]));read(fd, argv[1], strlen(argv[1]));printf("Read: %s\n", argv[1]);

像这样运行:

  1. $ ./test 'A quick brown fox jumped over the lazy dog'Read: dog lazy the over jumped fox brown quick A

它工作正常!玩得更逗一点:试试传递单个单词或者单个字母的短语,空的字符串或者是非英语字符串如果你有这样的键盘布局设置),以及其它任何东西。

现在,让我们让事情变得更好玩一点。我们将创建两个进程,它们共享一个文件描述符及其内核缓冲区)。其中一个会持续写入字符串到设备,而另一个将读取这些字符串。在下例中,我们使用了fork(2)系统调用,而pthreads也很好用。我也省略打开和关闭设备的代码,并在此检查代码错误又来了):

  1. char *phrase = "A quick brown fox jumped over the lazy dog";if (fork())/* Parent is the writer */while (1)write(fd, phrase, len);else/* child is the reader */while (1) {read(fd, buf, len);printf("Read: %s\n", buf);}

你希望这个程序会输出什么呢?下面就是在我的笔记本上得到的东西:

  1. Read: dog lazy the over jumped fox brown quick ARead: A kcicq brown fox jumped over the lazy dogRead: A kciuq nworb xor jumped fox brown quick ARead: A kciuq nworb xor jumped fox brown quick A...

这里发生了什么呢?就像举行了一场比赛。我们认为readwrite是原子操作,或者从头到尾一次执行一个指令。然而,内核确实无序并发的,随便就重新调度了reverse_phrase()函数内部某个地方运行着的写入操作的内核部分。如果在写入操作结束前就调度了read()操作呢?就会产生数据不完整的状态。这样的bug非常难以找到。但是,怎样来处理这个问题呢?

基本上,我们需要确保在写方法返回前没有read方法能被执行。如果你曾经编写过一个多线程的应用程序,你可能见过同步原语锁),如互斥锁或者信号。Linux也有这些,但有些细微的差别。内核代码可以运行进程上下文用户空间代码的“代表”工作,就像我们使用的方法)和终端上下文例如,一个IRQ处理线程)。如果你已经在进程上下文中和并且你已经得到了所需的锁,你只需要简单地睡眠和重试直到成功为止。在中断上下文时你不能处于休眠状态,因此代码会在一个循环中运行直到锁可用。关联原语被称为自旋锁,但在我们的环境中,一个简单的互斥锁 —— 在特定时间内只有唯一一个进程能“占有”的对象 —— 就足够了。处于性能方面的考虑,现实的代码可能也会使用读-写信号。

锁总是保护某些数据在我们的环境中,是一个“struct buffer”实例),而且也常常会把它们嵌入到它们所保护的结构体中。因此,我们添加一个互斥锁‘struct mutex lock’)到“struct buffer”中。我们也必须用mutex_init()来初始化互斥锁;buffer_alloc是用来处理这件事的好地方。使用互斥锁的代码也必须包含linux/mutex.h

互斥锁很像交通信号灯 —— 要是司机不看它和不听它的,它就没什么用。因此,在对缓冲区做操作并在操作完成时释放它之前,我们需要更新reverse_read()reverse_write()来获取互斥锁。让我们来看看read方法 —— write的工作原理相同:

  1. static ssize_t reverse_read(struct file *file, char __user * out,size_t size, loff_t * off){struct buffer *buf = file->private_data;ssize_t result;if (mutex_lock_interruptible(&buf->lock)) {result = -ERESTARTSYS;goto out;}

我们在函数一开始就获取锁。mutex_lock_interruptible()要么得到互斥锁然后返回,要么让进程睡眠,直到有可用的互斥锁。就像前面一样,_interruptible后缀意味着睡眠可以由信号来中断。

  1. while (buf->read_ptr == buf->end) {mutex_unlock(&buf->lock);/* ... wait_event_interruptible() here ... */if (mutex_lock_interruptible(&buf->lock)) {result = -ERESTARTSYS;goto out;}}

下面是我们的“等待数据”循环。当获取互斥锁时,或者发生称之为“死锁”的情境时,不应该让进程睡眠。因此,如果没有数据,我们释放互斥锁并调用wait_event_interruptible()。当它返回时,我们重新获取互斥锁并像往常一样继续:

  1. if (copy_to_user(out, buf->read_ptr, size)) {result = -EFAULT;goto out_unlock;}...out_unlock:mutex_unlock(&buf->lock);out:return result

最后,当函数结束,或者在互斥锁被获取过程中发生错误时,互斥锁被解锁。重新编译模块别忘了重新加载),然后再次进行测试。现在你应该没发现毁坏的数据了。

接下来是什么?

现在你已经尝试了一次内核黑客。我们刚刚为你揭开了这个话题的外衣,里面还有更多东西供你探索。我们的第一个模块有意识地写得简单一点,在从中学到的概念在更复杂的环境中也一样。并发、方法表、注册回调函数、使进程睡眠以及唤醒进程,这些都是内核黑客们耳熟能详的东西,而现在你已经看过了它们的运作。或许某天,你的内核代码也将被加入到主线Linux源代码树中 —— 如果真这样,请联系我们!

原文链接:http://linux.cn/article-3251-1.html


相关内容