4 MAC层安全机制

由于CR技术的引入,CR网络除同样面临传统无线网络的很多安全问题外,还面临一些新的安全隐患。如在MAC层,由于存在频谱检测的同步、缺乏公共控制信道等固有的问题,其安全问题也不可忽略。CR网络MAC层可实施的4种新的攻击手段分别为:

(1)偏袒效用攻击:自私的CR用户可以通过修改MAC层频谱分配效用函数的参数来增加自己所获得的带宽,如果其他CR用户或者基站无法检测到这种异常行为,将会导致其他CR用户的可用频谱资源的减少。

(2)异步感知攻击:在其他CR用户进行同步静默期检测的时候,恶意CR用户选择异步发送信号,从而使得基站或其他CR用户误以为检测到的是授权用户发送的信号,导致频谱机会的丢失。

(3)虚假反馈攻击:恶意用户通过反馈虚假的频谱检测或分配信息来破坏频谱分配的公平性或引发其他节点的错误行为,这种攻击行为就是虚假反馈攻击,在集中式和分布式的CR网络中都可以实施。

在集中式的CR网络中,虚假反馈攻击通常发生在恶意节点通过向基站回报虚假的频谱感知信息的场景下,但由于基站是通过信息融合来进行判决,要实施这种攻击,需要大量的恶意节点汇报相同的虚假信息,其效率是比较低的。

在分布式的CR网络中,CR用户通过交互信息来进行协作信道分配,若一个或一组恶意用户对于授权用户频谱占用情况或可用信道情况传送虚假反馈信息,将会导致其他CR用户做出干扰授权用户或丢失频谱接入机会的决定。

(4)饱和控制信道攻击:在CR网络中,公共控制信道既是网络性能的瓶颈,也是安全的关键点。公共控制信道之所以成为网络性能的瓶颈,是由于业务流量的增大会引起频繁的控制信息交互,从而可能造成控制信道饱和,另外控制信息数据包的碰撞会降低控制机制的有效性,同时影响信道协商分配过程,这两种情况都会造成网络性能的下降。而成为安全的关键点,是因为攻击者可以通过发送大量伪造的MAC控制信息来造成饱和控制信道攻击,这样合法的CR用户就无法利用控制信道来协商数据信道的分配了,从而造成CR网络不可用。

以上MAC层的攻击行为主要通过对MAC帧的修改和伪造来实施。对于集中式网络,可增加对MAC帧的认证机制。如IEEE 802.22 WRAN网络中,BS/CPE协议参考模型建立了4个专用的模块化安全子层,用来保护数据、认证频谱感知和定位信息、认证频谱管理实体的配置信息。

然而在分布式CR网络中,由于缺乏可信的实体作为服务器控制密钥分发来进行加密认证和完整性保护,应用安全子层非常困难。因此,采用相邻节点监视机制应该更适合于分布式CR网络。

5 MAC层的跨层设计

上述MAC 层各关键技术的设计通常受限于传统的分层协议模型。为适应CR网络自适应动态无线环境的特性,如何结合物理层和上层信息,设计和实现全局优化的MAC层技术,成为目前的研究热点之一。

在MAC层与物理层跨层设计方面,提出了基于检测贡献加权的比例公平性频谱分配算法,将MAC层的频谱分配和物理层的频谱检测联合设计,为在频谱检测中作贡献大的CR用户分配更多的频谱,最大化系统吞吐量的同时体现分配的公平性。

提出了带宽功率控制博弈(BPCG)算法,将MAC层的频谱分配和物理层的功率控制联合设计,在降低用户之间干扰的同时,通过对频谱的有效分配,充分利用频谱资源,实现网络吞吐量的提高。

在MAC 层与网络层路由选择跨层设计方面,研究表明,MAC 层频谱分配和网络层路由的联合设计能显著的提高连接的稳定性和端到端的吞吐量,其基本思想是将路由选择和频谱分配两项任务合并到网络层执行,由网络层选择路由并调度路由上无冲突信道的使用。基于这一思想,提出一种合作式路由选择和频谱分配的跨层解决方案。MAC层和网络层的合作通过分级路由和信道选择过程实现,在选择路由的同时,调度每段路由上无冲突信道的使用,使得路由的稳定性和端到端吞吐量得到提高。

在MAC 层与传输层跨层设计方面,MAC层的频谱分配和传输层TCP协议进行联合跨层设计,可避免频谱的动态变化对TCP协议超时重传机制带来的不利影响。

可能的解决方案是:TCP协议根据MAC层的频谱分配情况获取CR用户当前工作的频段,并计算出该频段对应的传输往返时间(RTT),结合RTT设置恢复时间目标(RTO)参数。同时,当MAC层的频谱分配发生改变时,TCP协议结合CR用户工作频段的变化情况重新计算出当前工作频段对应的RTT,从而根据变化的RTT自适应地调整RTO参数,使协议性能得到优化。

6 结束语

CR网络是目前的一个研究热点, 而其中MAC层关键技术的研究则更是人们关注的重点。当前MAC层频谱检测管理、接入控制、动态频谱分配、安全机制及跨层设计等问题还处于理论研究的阶段。相信通过研究人员的不懈努力,CR网络将进一步走向实用。

编辑推荐】


相关内容

    暂无相关文章