改善信号质量

很多情况下,通过选择合适的天线类型可以较大程度地补偿电磁场强度的损失。一般而言,有三种类型的天线可用选择:全向天线(omni-directional antenna, omni antenna),定向天线(directional antenna)和所谓的泄漏馈线电缆(leaky feeder cable, RCoax)。

正如其名,全向天线朝所有方向传播统一的无线电信号(在一个依据天线校准的水平或垂直的平面内,360度)。这种天线的典型应用是在覆盖域已经优化了的环境中。其中,在有限的距离内存在大量的用户,而天线朝向各异。

定向天线可以在一个方向上以更大的强度传播电磁波,而在其它方向上电磁场的强度都较低。其中,传播的方向性由波束宽度和提供一半的最大传播功率的两个方向的夹角所决定。常见的方向天线的用途在于建筑物到建筑物之间的通信,或者为下述环境提供无线覆盖,包括沿狭窄的通道,或高架空间,或建筑物内部的金属架以及其它吸收无线电的障碍物之间。

工业环境也常常“造就”无法使用天线系统来提供无线通信的传输和接收的情形。这种情况,典型的如走廊,隧道或是轨道交通工具的通信。泄漏馈线电缆可以用来为固定且较窄的通道提供无线通信。Rcoax天线采用了同轴电缆的形式,并具有插槽用以发射和接收无线电信号。这种天线的好处在于使人们在狭窄的电缆范围内得到了可控的无线电场强,其长度可达200m,而信号范围则可以达到距离电缆7m的地方。此外,电缆的最大长度和信号范围依赖于接入点的功率设定结果和所使用的频率。

为了恰当地预测天线的覆盖域,重要的一点在于把天线的特征集成到所使用的规划工具中。

以仿真促规划

一个网络项目的成败往往在其早期的规划阶段就已经被决定了。在早期阶段,项目经理需要在适当的时候粗略地估计一下自动化网络的可能费用。能够用以确定一个无线局域网的详尽规划的费用及以后的情况,这样的功能是很有益处的。

大部分使用者可能希望无线覆盖域是可改变的或可以针对潜在的环境变化而升级。这就需要获得在将要进行规划的区域内的各种机器和设备的精确的信息,然后建立合理的环境模型。这些数据将使得可能的模型的弱点在仿真中得到检测,并进而确定接入点和天线的最优安装位置。在验证仿真结果时,通过测量实际的信号质量,来检验上述理论。最后,一份大家都可以看到的报告为所得结果提供了证明,从而避免了因缺少严格规划方式而带来的烦恼。

当然,上述步骤可以手动计算得到,不过使用合适的规划和仿真软件事实上将会更加全面,因为在大规模的计算机信号强度/质量矩阵中不可避免地包含了数目巨大的预测值。使用完全计算机化的流程,其更深层次的关键性的优势在于可以仿真大量的场景,有必要的话也可以使用迭代的方法,而不必与无线硬件掺和在一起。直到可预测的无线局域网阶段已经确定,再购买实际的设备。这样可以排除稍后的昂贵的返工阶段。此外,未来的网络扩展亦可基于已存储的早期规划结果进行。


相关内容