无线MIMO测试开发策略(1)


引言

有限的带宽和不断增加的新的无线服务的需求为通信领域新技术的采用开辟了道路,这些非传统技术有效提升了数据容量。新采用的这些技术中的一种就是利用多天线设计的多输入、多输出MIMO)系统架构。MIMO利用了发送和接收天线之间的空间分集技术——由信号衰落和多径环境引起的多信号路径产生——来增加数据吞吐量而无须额外的增加带宽。但相比传统的单流架构MIMO,系统复杂度增加了许多,带来了更大的测试挑战,需要独特的设备和测试方法。

本文介绍了MIMO测量的不同种类,包括噪声和干扰对于信道的损害,并提供一些图片示例方便大家对于测量结果的理解。

对于新近的无线通信标准,高数据吞吐量是最基本的要求,这些新标准MIMO都有参与,包括IEEE 802.11n WLAN、IEEE 802.16e移动WiMAX Wave 2和3GPP长期演进LTE)。这些新系统都结合了MIMO和OFDM或者OFDMA正交频分多址接入)的采用,来实现在不增加信道带宽的前提下增加数据吞吐量。

SISO与MIMO比较

在传统的单输入、单输出SISO)通信系统中如图1a所示),例如,传统的IEEE 802.11a/b/g无线局域网络WLAN)系统,一个无线链路采用了单发射器和单接收器。也许会在每个通信链路终端上采用多个天线,但在同一时刻只有一套天线被采用,并只有一个载波传输单流的数据。在理想的通信信道中,无线信号从发射器到接收器只通过单一路径传输,但无线信道中的障碍物比如楼宇和各种地形)和移动影响产生了多径效应,因此,接收器会接收到多个信号。反射的信号由于相比直接传输的信号传播路径更长,会受到衰减和延迟的影响。因为传输路径的不同,这些反射信号的相位也各不相同。因此,接收机信号的重建面临难度,会造成接收信号强度的波动。较强的多径效应会降低吞吐量或者造成数据丢失。

图1 传统的SISO架构的无线信号链路a),采用一对天线在同一时间进行发射和接收而MIMO系统b)同时采用多信号和多天线

因为在指定通信信道中,OFDM通常与MIMO进行组合来增强数据吞吐量,所以在探讨MIMO概念之前理解OFDM是非常重要的。例如,OFDM在IEEE 802.11g (Wi-Fi)和IEEE 802.16e WiMAX系统中得到了采用。在MIMO的基础上,采用OFDM可以进一步提升数据吞吐量,而无须增加带宽或改变调制阶数——比如从16QAM变成64QAM系统。

采用OFDM调制的无线信号本质上是由一系列相互正交的子载波构成的,这些子载波彼此形成了最佳的隔离,因此一个调制后的子载波处于最大功率时,其临近调制后子载波正好处于过零点或功率最小处,而一些子载波作为保护频带来实现隔离并防止临近信道干扰。为了增强鲁棒性,许多通信标准采用的OFDM采用了小衰减间隔,让多路信号分量随时间衰减,这样这些信号就不会对下一个接收机收到的传输符号产生干扰。

通过采用反向傅里叶变换对OFDM的子载波进行数字信号处理,可将其结合到一个信号流里面传输并可恢复原信号。因为保留多流信号的相对相位和频率关系,这些信号流就可以并行的在单一信道传输,所以就可以实现在不增加带宽的前提下提高数据吞吐量。

与SISO通信系统相比,MIMO系统图1b)同时采用多无线信号和多天线,多个数据流在同一通信信道传输。这些多路的数据流由媒体接入控制MAC)层在通信链路两端进行协调。MIMO系统不需要天线的对称排列,例如,两个发射要配备两个接收2×2)或者四个发射要配备四个接收4×4),可以进行“不平衡”配置,例如四个发射配备三个接收的4×3配置。

要增加SISO系统的数据吞吐量,需要更为复杂的调制方式,或者增加带宽,或进行两者的结合。加倍SISO系统吞吐量最简单的方法是将带宽加倍。要增加MIMO系统的吞吐量,发射器、接收器和相应天线的数量需要增加。通过采用多天线和信号传播路径的空间多路技术,MIMO系统可以在不增加信道带宽的前提下增加大概3.5倍的吞吐量。

MIMO系统利用接收信号的变更来增加数据吞吐量,接收到的信号被看作未知信号发送的符号)的联立方程。多路信号路径的多样性变化让这些联立方程解决的更加简单,并提升了吞吐量。

SISO的信道容量与MIMO系统相比如何呢?香农定律指明了SISO通信系统的信道吞吐量为

C=BLog2(1+S/N) 

式中:C为信道容量单位b/s),B为信道带宽单位Hz),S为带宽上总的信号功率单位W或者V2),N为带宽上总的噪声功率单位W或者V2)。当该公式用于MIMO应用时:

C=ABlog2(1+S/N) 

式中:A为发射天线的数量。

该等式指出了MIMO系统中发射天线数量与信道容量的直接关系。一个MIMO系统在同一物理信道上利用空间复用技术用多天线传输多路数据流,数据流在不改变符号速率的情况下在多个发射机上进行发送。通过增加更多的发射机和发射天线,系统的吞吐量在带宽不变的情况下得到提升。

为MIMO系统建模必须考虑多数据流的数量,包括到达接收机的直接和反射信号。按照传统的方法,将发射器分别表示为Tx1,Tx2,…,Txn,将接收机表示为Rx1,Rx2,…,Rxn,一个MIMO通信系统可由一个矩阵信号向量hxy的形式表示,其中x表示发射机的数量,y表示接收机的数量。例如,h21表示两个发射机和一个接收机,而h22表示两个发射机和两个接收机如图2所示)。通过这种方法,一个MIMO信道可以这样建模:

y=H*x+n

式中:y为接收信号向量,H为信道矩阵(hxy信号元素),x为发射信号向量,n为噪声向量。

图2 MIMO系统中的无线信道可由一系列不同的向量来表示

不同的信道对接收信号产生影响,例如,衰减和多经影响,可由同样的代数方程矫正,关系式为

Rx=H*Tx+n

式中:Rx表示接收天线的Rx1,Rx2,…,Rxn矩阵,Tx表示发射天线的Tx1,Tx2,…,Txn矩阵。对于一个2×2 MIMO系统,关系如图2的矩阵。

这些关系式中的信号包含幅段、频率和相位分量,所以用向量表示很实用。简单而言,在一个测量系统中用向量来表示这些信号也很实用。


相关内容