APUE学习之多线程编程(二):线程同步,apue多线程编程


     为了保证临界资源的安全性和可靠性,线程不得不使用锁,同一时间只允许一个或几个线程访问变量。常用的锁有互斥量,读写锁,条件变量           一、互斥量      互斥量是用pthread_mutex_t数据类型表示的,在使用之前,必须对其进行初始化,可以把它设置为PTHREAD_MUTEX_INITIALIZER(只适于静态分配的互斥量),也可以通过调用pthread_mutex_init函数进行初始化,最后还要调用pthread_mutex_destroy进行释放。
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
     要用默认的属性初始化互斥量,只需把attr设为NULL,后面在讨论互斥量属性。      对互斥量进行加锁,使用pthread_mutex_lock,如果互斥量已经上锁,调用线程将阻塞至互斥量解锁,对互斥量解锁,使用pthread_mutex_unlock,如果线程不希望被阻塞,它可以调用pthread_mutex_trylock尝试对互斥量进行加锁,如果互斥量未锁住,则成功加锁,如果互斥量已锁住,pthread_mutex_trylock就会失败,返回EBUSY。
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
例子: #include <stdio.h> #include <pthread.h> struct foo { int f_count; pthread_mutex_t f_lock; int f_id; }; struct foo * foo_alloc(int id) { struct foo *fp = NULL; if ((fp = malloc(sizeof(struct foo))) != NULL) { fp->f_count = 1; fp->f_id = id; if (pthread_mutex_init(&fp->f_lock, NULL) != 0) { free(fp); return NULL; } } return fp; } void foo_hold(struct foo *fp) { pthread_mutex_lock(&fp->f_lock); fp->f_count++; pthread_mutex_unlock(&fp->f_lock); } void foo_rele(struct foo *fp) { pthread_mutex_lock(&fp->f_lock); if (--fp->f_count == 0) { pthread_mutex_unlock(&fp->f_lock); pthread_mutex_destroy(&fp->f_lock); free(fp); } else { pthread_mutex_unlock(&fp->f_lock); } } View Code      上面的例子描述了用于保护某个数据结构的互斥量,我们在对象中嵌入引用计数,确保在所有使用该对象的线程完成数据访问之前,该对象的内存空间不会被释放。        如果线程对同一个互斥量加锁两次,那么它自身将陷入死锁状态。如果有一个以上的互斥量,且允许一个线程一直占有第一个互斥量,并且试图锁住第二个互斥量时处于阻塞状态,但是拥有第二个互斥量的线程也在试图锁住第一个互斥量,也阻塞,就死锁了。      可以通过仔细控制互斥量加锁的顺序来避免死锁的发生,譬如要求所有线程必须先锁住互斥量A才能锁住互斥量B。另一种办法是当线程无法获得下一个互斥量的时候,就释放自己已占有的互斥量,过一段时间再试。 例子: #include "apue.h" #include <pthread.h> #define NMASH 29 #define HASH(id) (((unsigned long)id) % NMASH) struct foo *fh[NMASH]; pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER; struct foo { int f_count; pthread_mutex_t f_lock; int f_id; struct foo *f_next; }; struct foo *foo_alloc(int id) { struct foo *fp = NULL; int idx = 0; if ((fp = malloc(sizeof(struct foo))) != NULL) { fp->f_count = 1; fp->f_id = if; if (pthread_mutex_init(&fp->f_lock, NULL) != 0) { free(fp); return NULL; } idx = HASH(id); pthread_mutex_lock(&hashlock); fp->f_next = fh[idx]; fh[idx] = fp; pthread_mutex_lock(&fp->f_lock); pthread_mutex_unlock(&hashlock); pthread_mutex_unlock(&fp->f_lock); } return fp; } void foo_hold(struct foo *fp) { pthread_mutex_lock(&fp->f_lock); fp->f_count++; pthread_mutex_unlock(&fp->f_lock); } struct foo *foo_find(int id) { struct foo *fp = NULL; pthread_mutex_lock(&hashlock); for (fp = fh[HASH(id)]; fp != NULL; fp = fp->next) { if (fp->f_id = id) { foo_hold(fp); break; } } pthread_mutex_unlock(&hashlock); return fp; } void foo_rele(struct foo *fp) { struct foo *tfp = NULL; int idx = 0; pthread_mutex_lock(&fp->f_lock); if (fp->f_count == 1) { pthread_mutex_unlock(&fp->f_lock); pthread_mutex_lock(&hashlock); pthread_mutex_lock(&fp->f_lock); if (fp->f_count != 1) { fp->f_count--; pthread_mutex_unlock(&hashlock); pthread_mutex_unlock(&fp->f_lock); return; } idx = HASH(fp->f_id); tfp = fh[idx]; if (tfp = fp) { fh[idx] = fp->f_next } else { while(tfp->next != fp) { tfp = tfp->next; } tfp->next = fp->f_next; } pthread_mutex_unlock(&hashlock); pthread_mutex_unlock(&fp->f_lock); pthread_mutex_destroy(&fp->f_lock); free(fp); } else { fp->f_count--; pthread_mutex_unlock(&fp->f_lock); } } View Code      这个例子比上一个例子多了一个散列表和一个保护散列表的互斥量,加锁的顺序是先hashlock,再f_lock,注意这个顺序,就不会发生死锁,不过这样也导致代码太繁琐,最后一个函数解锁f_lock后重新加锁f_lock,需要重新考察f_count的值,因为可能在这期间被其他线程修改。      这样的方式太复杂,让hashlock也保护f_cout,事情会简单很多。 例子: #include "apue.h" #include <pthread.h> #define NMASH 29 #define HASH(id) (((unsigned long)id) % NMASH) struct foo *fh[NMASH]; pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER; struct foo { int f_count; pthread_mutex_t f_lock; int f_id; struct foo *f_next; }; struct foo *foo_alloc(int id) { struct foo *fp = NULL; int idx = 0; if ((fp = malloc(sizeof(struct foo))) != NULL) { fp->f_count = 1; fp->f_id = if; if (pthread_mutex_init(&fp->f_lock, NULL) != 0) { free(fp); return NULL; } idx = HASH(id); pthread_mutex_lock(&hashlock); fp->f_next = fh[idx]; fh[idx] = fp; pthread_mutex_lock(&fp->f_lock); pthread_mutex_unlock(&hashlock); pthread_mutex_unlock(&fp->f_lock); } return fp; } void foo_hold(struct foo *fp) { pthread_mutex_lock(&hashlock); fp->f_count++; pthread_mutex_unlock(&hashlock); } struct foo *foo_find(int id) { struct foo *fp = NULL; pthread_mutex_lock(&hashlock); for (fp = fh[HASH(id)]; fp != NULL; fp = fp->next) { if (fp->f_id = id) { foo_hold(fp); break; } } pthread_mutex_unlock(&hashlock); return fp; } void foo_rele(struct foo *fp) { struct foo *tfp = NULL; int idx = 0; pthread_mutex_lock(&hashlock); if (fp->f_count == 1) { idx = HASH(fp->f_id); tfp = fh[idx]; if (tfp = fp) { fh[idx] = fp->f_next } else { while(tfp->next != fp) { tfp = tfp->next; } tfp->next = fp->f_next; } pthread_mutex_unlock(&hashlock); pthread_mutex_destroy(&fp->f_lock); free(fp); } else { fp->f_count--; pthread_mutex_unlock(&hashlock); } } View Code      当线程试图获取一个已加锁的互斥量时,pthread_mutex_timedlock互斥量原语允许绑定线程阻塞时间。pthread_mutex_timedlock和pthread_mutex_lock是基本等价的,但是达到超时时间后,pthread_mutex_timedlock会返回。超时时间指原意等待的绝对时间。这个超时时间是用timespec来表示的
#include <pthread.h>
#include <time.h>
int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex, const struct timespec *restrict tsptr);

 

     二、读写锁      读写锁与互斥量相似,不过读写锁允许更高的并行性,一次只有一个线程可以占有写模式的读写锁,但是多个线程可以同时占有读模式的读写锁,简单地来说,就说支持一个写者,多个读者。      当读写锁是写加锁状态时,所以试图对这个锁加锁的线程都会被阻塞,当读写锁在读加锁状态时,所以试图以读模式对它进行加锁的线程都可以得到访问权,但是希望以写模式加锁的线程会被阻塞。不过当有一个线程企图以写模式获取锁时,读写锁会阻塞后面的读模式锁请求,防止读模式锁长期占用。      可知,读写锁适用于对数据结构读的次数远大于写的情况,又称共享互斥锁,读共享,写互斥。
#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
     读写锁调用phtread_rwlock_init进行初始化,如果希望读写锁有默认的属性,传null给attr即可。      读的模式下锁定读写锁,需要调用phtread_rwlock_rdlock,写的模式下锁定读写锁,需要调用pthread_rwlock_wrlock,不过以何种方式锁定读写锁,都可以调用pthread_rwlock_unlock解锁。
#include <pthread.h>
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
例子: #include <stdio.h> #include <pthread.h> struct job { struct job *j_next; struct job *j_prev; pthread_t j_id; }; struct queue { struct job *q_head; struct job *q_tail; pthread_rwlock_t q_lock; }; int queue_init(struct queue *qp) { int err; qp->q_head = NULL; qp->q_tail = NULL; err = pthread_rwlock_init(&qb->q_lock, NULL); if (err != 0) { return err; } return 0 } void job_insert(struct queue *qp, struct job *jp) { pthread_rwlock_wrlock(&qb->q_lock); jp->next = qp->head; jp->j_prev = NULL; if (qp->q_head != NULL) { qp->q_head->j_prev = jp; } else { qp->tail = jp; } qp->head = jp; pthread_rwlock_unlock(&qp->q_lock); } void job_append(struct queue *qp, struct job *jp) { pthread_rwlock_wrlock(&qp->q_lock); jp->j_next = NULL; jp->j_prev = qp->tail; if (qp->q_tail != NULL) { qp->q_tail->j_next = jp; } qp->q_tail = jp; pthread_rwlock_unlock(&qp->q_lock); } void job_remove(struct queue *qp, struct job *jp) { pthread_rwlock_wrlock(&qp->q_lock); if (jp == qp->q_head) { qp->q_head = jp->j_next; if (qp->q_tail == jp) { qp->tail = NULL; } else { jp->next->j_prev = jp->j_prev; } } else if (jp == qp->q_tail) { qp->q_tail = jp->j_prev; jp->j_prev->j_next = NULL; } else { jp->j_prev->j_next = jp->j_next; jp->j_next->j_prev = jp->j_prev; } pthread_rwlock_unlock(&qp->q_lock); } struct job *job_find(struct queue *qp, pthread_t id) { struct job *jp; if (pthread_rwlock_rdlock(&qp->q_lock) != 0) { return NULL; } for (jp = qb->q_head; jp != NULL; jp = jp->j_next) { if (pthread_equal(jp->j_id, id)) { break; } } pthread_rwlock_unlock(&qp->q_lock); return jp; } View Code      与互斥量一样,读写锁也有带超时的读写锁函数,避免陷入永久的阻塞。
#include <pthread.h>
#include <time.h>
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict tsptr);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict tsptr);

 

     三、条件变量      条件变量与互斥量一起使用时,允许线程以无竞争的方式等待特定的条件发生。      条件本身由互斥量保护,线程在改变条件状态之前必须锁定互斥量。在使用条件变量之前,必须把它初始化,可以把常量PTHREAD_CON_INITIALIZE赋给静态分配的条件变量,也可用pthread_cond_init函数进行初始化。使用pthread_cond_destroy释放。
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
int pthread_cond_destroy(pthread_con_t *cond);
     如果需要一个默认属性的条件变量,把null给attr即可。      我们使用pthread_cond_wait等待条件变量为真,如果在给定时间内不能满足,则返回错误码。
#include<pthread.h>
int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex)
int pthread_cond_timedwait(pthread_cond_t *restrict cond, phtread_mutex_t *restrict mutex, const struct timespec *restrict tsptr)
     调用者把锁定的互斥量传给函数,函数自动把调用线程放到等待条件的线程列表上,对互斥量解锁,当pthread_cond_wait返回时,互斥量再次被锁住。pthread_cond_timedwait多了原意等待的时间。      有两个函数可用于通知线程条件已满足,pthread_cond_signal函数至少唤醒一个,pthread_cond_broadcast唤醒等待该条件的所有线程。
#include<phtread.h>
int pthread_cond_signal(pthread_cond_t *cond)
int pthread_cond_broadcast(pthread_cond_t *cond)
例子: #include <pthread.h> struct msg { struct msg *m_next; }; struct msg *workq; pthread_cond_t qready = PTHREAD_COND_INITIALIZER; pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER; void process_msg(void) { struct msg *mp; for(;;) { pthread_mutex_lock(&qlock); while (workq == NULL) { pthread_cond_wait(&qready, &qlock); } mp = workq; workq = mp->m_next; pthread_mutex_unlock(&qlock); } } void enqueue_msg(struct msg *mp) { pthread_mutex_lock(&qlock); mp->m_next = workq; workq = mp; pthread_mutex_unlock(&qlock); pthread_cond_signal(&qready); } View Code

相关内容

    暂无相关文章