linux下system函数的简单分析,linuxsystem函数


 1 int
 2 __libc_system (const char *line)
 3 {
 4   if (line == NULL)
 5     /* Check that we have a command processor available.  It might
 6        not be available after a chroot(), for example.  */
 7     return do_system ("exit 0") == 0;
 8 
 9   return do_system (line);
10 }
11 weak_alias (__libc_system, system)

代码位于glibc/sysdeps/posix/system.c,这里system是__libc_system的弱别名,而__libc_system是do_system的前端函数,进行了参数的检查,接下来看do_system函数。

  1 static int
  2 do_system (const char *line)
  3 {
  4   int status, save;
  5   pid_t pid;
  6   struct sigaction sa;
  7 #ifndef _LIBC_REENTRANT
  8   struct sigaction intr, quit;
  9 #endif
 10   sigset_t omask;
 11 
 12   sa.sa_handler = SIG_IGN;
 13   sa.sa_flags = 0;
 14   __sigemptyset (&sa.sa_mask);
 15 
 16   DO_LOCK ();
 17   if (ADD_REF () == 0)
 18     {
 19       if (__sigaction (SIGINT, &sa, &intr) < 0)
 20     {
 21       (void) SUB_REF ();
 22       goto out;
 23     }
 24       if (__sigaction (SIGQUIT, &sa, &quit) < 0)
 25     {
 26       save = errno;
 27       (void) SUB_REF ();
 28       goto out_restore_sigint;
 29     }
 30     }
 31   DO_UNLOCK ();
 32 
 33   /* We reuse the bitmap in the 'sa' structure.  */
 34   __sigaddset (&sa.sa_mask, SIGCHLD);
 35   save = errno;
 36   if (__sigprocmask (SIG_BLOCK, &sa.sa_mask, &omask) < 0)
 37     {
 38 #ifndef _LIBC
 39       if (errno == ENOSYS)
 40     __set_errno (save);
 41       else
 42 #endif
 43     {
 44       DO_LOCK ();
 45       if (SUB_REF () == 0)
 46         {
 47           save = errno;
 48           (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);
 49         out_restore_sigint:
 50           (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);
 51           __set_errno (save);
 52         }
 53     out:
 54       DO_UNLOCK ();
 55       return -1;
 56     }
 57     }
 58 
 59 #ifdef CLEANUP_HANDLER
 60   CLEANUP_HANDLER;
 61 #endif
 62 
 63 #ifdef FORK
 64   pid = FORK ();
 65 #else
 66   pid = __fork ();
 67 #endif
 68   if (pid == (pid_t) 0)
 69     {
 70       /* Child side.  */
 71       const char *new_argv[4];
 72       new_argv[0] = SHELL_NAME;
 73       new_argv[1] = "-c";
 74       new_argv[2] = line;
 75       new_argv[3] = NULL;
 76 
 77       /* Restore the signals.  */
 78       (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);
 79       (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);
 80       (void) __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL);
 81       INIT_LOCK ();
 82 
 83       /* Exec the shell.  */
 84       (void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);
 85       _exit (127);
 86     }
 87   else if (pid < (pid_t) 0)
 88     /* The fork failed.  */
 89     status = -1;
 90   else
 91     /* Parent side.  */
 92     {
 93       /* Note the system() is a cancellation point.  But since we call
 94      waitpid() which itself is a cancellation point we do not
 95      have to do anything here.  */
 96       if (TEMP_FAILURE_RETRY (__waitpid (pid, &status, 0)) != pid)
 97     status = -1;
 98     }
 99 
100 #ifdef CLEANUP_HANDLER
101   CLEANUP_RESET;
102 #endif
103 
104   save = errno;
105   DO_LOCK ();
106   if ((SUB_REF () == 0
107        && (__sigaction (SIGINT, &intr, (struct sigaction *) NULL)
108        | __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL)) != 0)
109       || __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL) != 0)
110     {
111 #ifndef _LIBC
112       /* glibc cannot be used on systems without waitpid.  */
113       if (errno == ENOSYS)
114     __set_errno (save);
115       else
116 #endif
117     status = -1;
118     }
119   DO_UNLOCK ();
120 
121   return status;
122 }
do_system

首先函数设置了一些信号处理程序,来处理SIGINT和SIGQUIT信号,此处我们不过多关心,关键代码段在这里

 1 #ifdef FORK
 2   pid = FORK ();
 3 #else
 4   pid = __fork ();
 5 #endif
 6   if (pid == (pid_t) 0)
 7     {
 8       /* Child side.  */
 9       const char *new_argv[4];
10       new_argv[0] = SHELL_NAME;
11       new_argv[1] = "-c";
12       new_argv[2] = line;
13       new_argv[3] = NULL;
14 
15       /* Restore the signals.  */
16       (void) __sigaction (SIGINT, &intr, (struct sigaction *) NULL);
17       (void) __sigaction (SIGQUIT, &quit, (struct sigaction *) NULL);
18       (void) __sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL);
19       INIT_LOCK ();
20 
21       /* Exec the shell.  */
22       (void) __execve (SHELL_PATH, (char *const *) new_argv, __environ);
23       _exit (127);
24     }
25   else if (pid < (pid_t) 0)
26     /* The fork failed.  */
27     status = -1;
28   else
29     /* Parent side.  */
30     {
31       /* Note the system() is a cancellation point.  But since we call
32      waitpid() which itself is a cancellation point we do not
33      have to do anything here.  */
34       if (TEMP_FAILURE_RETRY (__waitpid (pid, &status, 0)) != pid)
35     status = -1;
36     }

首先通过前端函数调用系统调用fork产生一个子进程,其中fork有两个返回值,对父进程返回子进程的pid,对子进程返回0。所以子进程执行6-24行代码,父进程执行30-35行代码。

子进程的逻辑非常清晰,调用execve执行SHELL_PATH指定的程序,参数通过new_argv传递,环境变量为全局变量__environ。

其中SHELL_PATH和SHELL_NAME定义如下

1 #define    SHELL_PATH    "/bin/sh"    /* Path of the shell.  */
2 #define    SHELL_NAME    "sh"        /* Name to give it.  */

 

其实就是生成一个子进程调用/bin/sh -c "命令"来执行向system传入的命令。

 

下面其实是我研究system函数的原因与重点:

在CTF的pwn题中,通过栈溢出调用system函数有时会失败,听师傅们说是环境变量被覆盖,但是一直都是懵懂,今天深入学习了一下,总算搞明白了。

在这里system函数需要的环境变量储存在全局变量__environ中,那么这个变量的内容是什么呢。

__environ是在glibc/csu/libc-start.c中定义的,我们来看几个关键语句。

# define LIBC_START_MAIN __libc_start_main

 

__libc_start_main是_start调用的函数,这涉及到程序开始时的一些初始化工作,对这些名词不了解的话可以看一下这篇文章。接下来看LIBC_START_MAIN函数。

  1 STATIC int
  2 LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL),
  3          int argc, char **argv,
  4 #ifdef LIBC_START_MAIN_AUXVEC_ARG
  5          ElfW(auxv_t) *auxvec,
  6 #endif
  7          __typeof (main) init,
  8          void (*fini) (void),
  9          void (*rtld_fini) (void), void *stack_end)
 10 {
 11   /* Result of the 'main' function.  */
 12   int result;
 13 
 14   __libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up;
 15 
 16 #ifndef SHARED
 17   char **ev = &argv[argc + 1];
 18 
 19   __environ = ev;
 20 
 21   /* Store the lowest stack address.  This is done in ld.so if this is
 22      the code for the DSO.  */
 23   __libc_stack_end = stack_end;
    ......
202 /* Nothing fancy, just call the function. */ 203 result = main (argc, argv, __environ MAIN_AUXVEC_PARAM); 204 #endif 205 206 exit (result); 207 }

我们可以看到,在没有define SHARED的情况下,在第19行定义了__environ的值。启动程序调用LIBC_START_MAIN之前,会先将环境变量和argv中的字符串保存起来(其实是保存到栈上),然后依次将环境变量中各项字符串的地址,argv中各项字符串的地址和argc入栈,所以环境变量数组一定位于argv数组的正后方,以一个空地址间隔。所以第17行的&argv[argc + 1]语句就是取环境变量数组在栈上的首地址,保存到ev中,最终保存到__environ中。第203行调用main函数,会将__environ的值入栈,这个被栈溢出覆盖掉没什么问题,只要保证__environ中的地址处不被覆盖即可。

所以,当栈溢出的长度过大,溢出的内容覆盖了__environ中地址中的重要内容时,调用system函数就会失败。具体环境变量距离溢出地址有多远,可以通过在_start中下断查看。

相关内容