Perf sched

调度器的好坏直接影响一个系统的整体运行效率。在这个领域,内核黑客们常会发生争执,一个重要原因是对于不同的调度器,每个人给出的评测报告都各不相同,甚至常常有相反的结论。因此一个权威的统一的评测工具将对结束这种争论有益。Perf sched 便是这种尝试。

Perf sched 有五个子命令:

perf sched record # low-overhead recording of arbitrary workloads
perf sched latency # output per task latency metrics
perf sched map # show summary/map of context-switching
perf sched trace # output finegrained trace
perf sched replay # replay a captured workload using simlated threads

用户一般使用’ perf sched record ’收集调度相关的数据,然后就可以用’ perf sched latency ’查看诸如调度延迟等和调度器相关的统计数据。

其他三个命令也同样读取 record 收集到的数据并从其他不同的角度来展示这些数据。下面一一进行演示。

perf sched record sleep 10 # record full system activity for 10 seconds
perf sched latency --sort max # report latencies sorted by max
-------------------------------------------------------------------------------------
Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |
-------------------------------------------------------------------------------------
:14086:14086 | 0.095 ms | 2 | avg: 3.445 ms | max: 6.891 ms |
gnome-session:13792 | 31.713 ms | 102 | avg: 0.160 ms | max: 5.992 ms |
metacity:14038 | 49.220 ms | 637 | avg: 0.066 ms | max: 5.942 ms |
gconfd-2:13971 | 48.587 ms | 777 | avg: 0.047 ms | max: 5.793 ms |
gnome-power-man:14050 | 140.601 ms | 434 | avg: 0.097 ms | max: 5.367 ms |
python:14049 | 114.694 ms | 125 | avg: 0.120 ms | max: 5.343 ms |
kblockd/1:236 | 3.458 ms | 498 | avg: 0.179 ms | max: 5.271 ms |
Xorg:3122 | 1073.107 ms | 2920 | avg: 0.030 ms | max: 5.265 ms |
dbus-daemon:2063 | 64.593 ms | 665 | avg: 0.103 ms | max: 4.730 ms |
:14040:14040 | 30.786 ms | 255 | avg: 0.095 ms | max: 4.155 ms |
events/1:8 | 0.105 ms | 13 | avg: 0.598 ms | max: 3.775 ms |
console-kit-dae:2080 | 14.867 ms | 152 | avg: 0.142 ms | max: 3.760 ms |
gnome-settings-:14023 | 572.653 ms | 979 | avg: 0.056 ms | max: 3.627 ms |
...
-----------------------------------------------------------------------------------
TOTAL: | 3144.817 ms | 11654 |
---------------------------------------------------

上面的例子展示了一个 Gnome 启动时的统计信息。

各个 column 的含义如下:

Task: 进程的名字和 pid

Runtime: 实际运行时间

Switches: 进程切换的次数

Average delay: 平均的调度延迟

Maximum delay: 最大延迟

这里最值得人们关注的是 Maximum delay,一般从这里可以看到对交互性影响最大的特性:调度延迟,如果调度延迟比较大,那么用户就会感受到视频或者音频断断续续的。

其他的三个子命令提供了不同的视图,一般是由调度器的开发人员或者对调度器内部实现感兴趣的人们所使用。

首先是 map:

$ perf sched map
...
N1 O1 . . . S1 . . . B0 . *I0 C1 . M1 . 23002.773423 secs
N1 O1 . *Q0 . S1 . . . B0 . I0 C1 . M1 . 23002.773423 secs
N1 O1 . Q0 . S1 . . . B0 . *R1 C1 . M1 . 23002.773485 secs
N1 O1 . Q0 . S1 . *S0 . B0 . R1 C1 . M1 . 23002.773478 secs
*L0 O1 . Q0 . S1 . S0 . B0 . R1 C1 . M1 . 23002.773523 secs
L0 O1 . *. . S1 . S0 . B0 . R1 C1 . M1 . 23002.773531 secs
L0 O1 . . . S1 . S0 . B0 . R1 C1 *T1 M1 . 23002.773547 secs
T1 => irqbalance:2089
L0 O1 . . . S1 . S0 . *P0 . R1 C1 T1 M1 . 23002.773549 secs
*N1 O1 . . . S1 . S0 . P0 . R1 C1 T1 M1 . 23002.773566 secs
N1 O1 . . . *J0 . S0 . P0 . R1 C1 T1 M1 . 23002.773571 secs
N1 O1 . . . J0 . S0 *B0 P0 . R1 C1 T1 M1 . 23002.773592 secs
N1 O1 . . . J0 . *U0 B0 P0 . R1 C1 T1 M1 . 23002.773582 secs
N1 O1 . . . *S1 . U0 B0 P0 . R1 C1 T1 M1 . 23002.773604 secs

星号表示调度事件发生所在的 CPU。

点号表示该 CPU 正在 IDLE。

Map 的好处在于提供了一个的总的视图,将成百上千的调度事件进行总结,显示了系统任务在 CPU 之间的分布,假如有不好的调度迁移,比如一个任务没有被及时迁移到 idle 的 CPU 却被迁移到其他忙碌的 CPU,类似这种调度器的问题可以从 map 的报告中一眼看出来。

如果说 map 提供了高度概括的总体的报告,那么 trace 就提供了最详细,最底层的细节报告。

pipe-test-100k-13520 [001] 1254.354513808: sched_stat_wait:
task: pipe-test-100k:13521 wait: 5362 [ns]
pipe-test-100k-13520 [001] 1254.354514876: sched_switch:
task pipe-test-100k:13520 [120] (S) ==> pipe-test-100k:13521 [120]
:13521-13521 [001] 1254.354517927: sched_stat_runtime:
task: pipe-test-100k:13521 runtime: 5092 [ns], vruntime: 133967391150 [ns]
:13521-13521 [001] 1254.354518984: sched_stat_sleep:
task: pipe-test-100k:13520 sleep: 5092 [ns]
:13521-13521 [001] 1254.354520011: sched_wakeup:
task pipe-test-100k:13520 [120] success=1 [001]

要理解以上的信息,必须对调度器的源代码有一定了解,对一般用户而言,理解他们十分不易。幸好这些信息一般也只有编写调度器的人感兴趣。。。

Perf replay 这个工具更是专门为调度器开发人员所设计,它试图重放 perf.data 文件中所记录的调度场景。很多情况下,一般用户假如发现调度器的奇怪行为,他们也无法准确说明发生该情形的场景,或者一些测试场景不容易再次重现,或者仅仅是出于“偷懒”的目的,使用 perf replay,perf 将模拟 perf.data 中的场景,无需开发人员花费很多的时间去重现过去,这尤其利于调试过程,因为需要一而再,再而三地重复新的修改是否能改善原始的调度场景所发现的问题。

下面是 replay 执行的示例:

$ perf sched replay
run measurement overhead: 3771 nsecs
sleep measurement overhead: 66617 nsecs
the run test took 999708 nsecs
the sleep test took 1097207 nsecs
nr_run_events: 200221
nr_sleep_events: 200235
nr_wakeup_events: 100130
task 0 ( perf: 13519), nr_events: 148
task 1 ( perf: 13520), nr_events: 200037
task 2 ( pipe-test-100k: 13521), nr_events: 300090
task 3 ( ksoftirqd/0: 4), nr_events: 8
task 4 ( swapper: 0), nr_events: 170
task 5 ( gnome-power-man: 3192), nr_events: 3
task 6 ( gdm-simple-gree: 3234), nr_events: 3
task 7 ( Xorg: 3122), nr_events: 5
task 8 ( hald-addon-stor: 2234), nr_events: 27
task 9 ( ata/0: 321), nr_events: 29
task 10 ( scsi_eh_4: 704), nr_events: 37
task 11 ( events/1: 8), nr_events: 3
task 12 ( events/0: 7), nr_events: 6
task 13 ( flush-8:0: 6980), nr_events: 20
------------------------------------------------------------
#1 : 2038.157, ravg: 2038.16, cpu: 0.09 / 0.09
#2 : 2042.153, ravg: 2038.56, cpu: 0.11 / 0.09
^C

perf bench

除了调度器之外,很多时候人们都需要衡量自己的工作对系统性能的影响。benchmark 是衡量性能的标准方法,对于同一个目标,如果能够有一个大家都承认的 benchmark,将非常有助于”提高内核性能”这项工作。

目前,就我所知,perf bench 提供了 3 个 benchmark:

1. Sched message

[lm@ovispoly ~]$ perf bench sched messaging

# Running sched/messaging benchmark...# 20 sender and receiver processes per group# 10 groups == 400 processes run Total time: 1.918 [sec]sched message 是从经典的测试程序 hackbench 移植而来,用来衡量调度器的性能,overhead 以及可扩展性。该 benchmark 启动 N 个 reader/sender 进程或线程对,通过 IPC(socket 或者 pipe) 进行并发的读写。一般人们将 N 不断加大来衡量调度器的可扩展性。Sched message 的用法及用途和 hackbench 一样。

2. Sched Pipe

[lm@ovispoly ~]$ perf bench sched pipe

# Running sched/pipe benchmark...# Extecuted 1000000 pipe operations between two tasks Total time: 20.888 [sec] 20.888017 usecs/op 47874 ops/secsched pipe 从 Ingo Molnar 的 pipe-test-1m.c 移植而来。当初 Ingo 的原始程序是为了测试不同的调度器的性能和公平性的。其工作原理很简单,两个进程互相通过 pipe 拼命地发 1000000 个整数,进程 A 发给 B,同时 B 发给 A。。。因为 A 和 B 互相依赖,因此假如调度器不公平,对 A 比 B 好,那么 A 和 B 整体所需要的时间就会更长。

3. Mem memcpy

[lm@ovispoly ~]$ perf bench mem memcpy

# Running mem/memcpy benchmark...# Copying 1MB Bytes from 0xb75bb008 to 0xb76bc008 ... 364.697301 MB/Sec这个是 perf bench 的作者 Hitoshi Mitake 自己写的一个执行 memcpy 的 benchmark。该测试衡量一个拷贝 1M 数据的 memcpy() 函数所花费的时间。我尚不明白该 benchmark 的使用场景。。。或许是一个例子,告诉人们如何利用 perf bench 框架开发更多的 benchmark 吧。

这三个 benchmark 给我们展示了一个可能的未来:不同语言,不同肤色,来自不同背景的人们将来会采用同样的 benchmark,只要有一份 Linux 内核代码即可。


相关内容