C语言细节


这篇文章主要讨论C语言细节问题。在找一份工作的时候,语言细节占的比例非常小,之前看某个贴着讨论,估计语言细节在面试中,占了10%的比重都不到,那为什么还要研究C语言的细节呢,我觉得有三个原因促使我总结这篇文章:

1. 总会有些面试官喜欢问这样的问题,尤其是偏底层开发的面试官。

2. 总有有那么两个2B同学、同事,搞两个很偏的知识点来考你,把你难倒以后,他就乐呵呵的满足了。

3. 对C语言有更加巩固的基础,增加信心,在代码出错时,可以非常肯定哪里没有错,而把精力花在真正的问题上。


1) switch注意事项( case后面只能是整型或字符型的常量或表达式)

     (1) case后面可以用continue,与break的功能一模一样

     (2) case后面可以是常量,常量表达式,#define宏,枚举值。但是不能是const常量,这是因为C语言中const不是真正的常量,只不过是只读的变量,如果下面的代码位于cpp文件中,也就是采用C++的编译器,则case zero: puts("0");是没有问题的。这也反面证明了,C语言中没有真正的常量,const代表只读。

     (3) 最好不要缺省default语句,且用default处理异常情况

  1. #include <stdio.h>   
  2. #include <stdlib.h>   
  3.    
  4. #define FIVE 5   
  5. enum em{SIX=6};  
  6. int main()  
  7. {  
  8.         int a = 1;  
  9.         int i = 0;  
  10.         const int zero = 0;  
  11.         for( i = 0; i < 7; i++ )  
  12.         {  
  13.                 switch( i )  
  14.                 {  
  15.                         //case zero:puts("0");break; //gcc 报错"错误: case 标号不能还原为一个整常量"   
  16.                         case 1:puts("1");break;  
  17.                         case 2:puts("2");continue;  
  18.                         case 3:puts("3");continue;  
  19.                         case 2 + 2:puts("4");break;  
  20.                         case FIVE: puts("5");break;  
  21.                         case SIX: puts("6");break;  
  22.                         default: puts("error");  
  23.                 }  
  24.         }  
  25.     return 0;  
  26. }  

2) 无符号型与有符号型数据相加

  1. #include <stdio.h>   
  2.   
  3. int main(int argc, char* argv[])  
  4. {  
  5.     unsigned int a = -20;  
  6.     int b = 10;  
  7.     if( a + b > 6 )  
  8.     {  
  9.         puts(">6");  
  10.     }  
  11.     else  
  12.     {  
  13.         puts("<6");  
  14.     }  
  15.     return 0;  
  16. }  
    以上代码输出结果是 >6,原因是编译器做了隐私转换,把int 转换为unsigned int,编译器就会把b转换成一个很大的正数。

3) static的作用

    static在c语言中有两个作用。(1)限制变量存储域[用static修饰的变量都存储在静态存储区,在整个程序的生命周期内可见],(2)限制函数作用域[static修饰的函数,只在同一源文件中可见,同一工程的其他源文件也不可见]。C++对static进行了扩展,用定义静态数据成员和成员函数,静态数据成员和静态成员函数都是类共享,而不是某个对象特有。还要注意的就是,静态变量自动初始化为0

4) 内存的三种分配方式

(1)       从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。

(2)       在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内���容量有限。

(3)       从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

     发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。

常见的内存错误及其对策如下:

(1) 内存分配未成功,却使用了它。

编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

(2) 内存分配虽然成功,但是尚未初始化就引用它。

犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

(3) 内存分配成功并且已经初始化,但操作越过了内存的边界。

例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

 (4) 忘记了释放内存,造成内存泄露。

含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/delete同理)。

(5)  释放了内存却继续使用它。

有三种情况:

(1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。

(2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。

(3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

 

【规则7-2-1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。

【规则7-2-2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

【规则7-2-3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

【则7-2-4】动态内存的申请与释放必须配对,防止内存泄漏。

【规则7-2-5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

5) 空结构体的大小

  1. #include <stdio.h>   
  2.   
  3. struct stu  
  4. {  
  5. };  
  6. int main(int argc, char* argv[])  
  7. {  
  8.         printf("%d\n"sizeof(struct stu));  
  9.         return 0;  
  10. }  
   用g++编译输出结果为1,用vc++6.0编译输出结果为1,只有用gcc编译输出结果为0[特殊情况],经常考的题目是定义一个空的类,然后sizeof这个类,输出结果为1,问:为什么是1不是0?

    答:编译器不能产生一个没有任何容积的数据类型,编译器认为任何一种数据类型都有其大小,用他来定义一个变量能够分配确定大小的空间,所以,编译器认为任何数据类型都有其大小。并且,编译器构造一个结构体数据类型是用来打包一些数据的,而最小的数据成员(char)需要一字节,编译器为每个结构体类型至少预留一个字节的空间,所以空结构体/空类的大小为一字节。

  • 1
  • 2
  • 3
  • 下一页

相关内容