Linux字符设备驱动之register_chrdev_region()系列


1.内核中所有已分配的字符设备编号都记录在一个名为 chrdevs 散列表里。该散列表中的每一个元素是一个 char_device_struct 结构,它的定义如下:

static struct char_device_struct {

struct char_device_struct *next; // 指向散列冲突链表中的下一个元素的指针

unsigned int major;           // 主设备号

unsigned int baseminor;       // 起始次设备号

int minorct;                 // 设备编号的范围大小

char name[64];        // 处理该设备编号范围内的设备驱动的名称

struct file_operations *fops;     

struct cdev *cdev;        // 指向字符设备驱动程序描述符的指针

} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];

1>内核并不是为每一个字符设备编号定义一个 char_device_struct 结构,而是为一组对应同一个字符设备驱动的设备编号范围定义一个 char_device_struct 结构。chrdevs 散列表的大小是 255,散列算法是把每组字符设备编号范围的主设备号以 255 取模插入相应的散列桶中。同一个散列桶中的字符设备编号范围是按起始次设备号递增排序的。

2.注册

内核提供了三个函数来注册一组字符设备编号,这三个函数分别是 register_chrdev_region()alloc_chrdev_region()

register_chrdev()。这三个函数都会调用一个共用的

__register_chrdev_region() 函数来注册一组设备编号范围(即一个 char_device_struct 结构)。

1>int register_chrdev_region(dev_t from, unsigned count, const char *name)

from :要分配的设备编号范围的初始值(次设备号常设为0);

Count:连续编号范围.

name:编号相关联的设备名称. (/proc/devices);

 

2>动态分配:

int alloc_chrdev_region(dev_t *dev,unsigned int firstminor,unsigned int count,char *name);

firstminor是请求的最小的次编号;

count是请求的连续设备编号的总数;

name为设备名,返回值小于0表示分配失败。

然后通过major=MMOR(dev)获取主设备号

3>释放:

Void unregist_chrdev_region(dev_t first,unsigned int count);

调用Documentation/devices.txt中能够找到已分配的设备号.

3.__register_chrdev_region() 函数的实现代码

/*

  84 * Register a single major with a specified minor range.

  85 *

  86 * If major == 0 this functions will dynamically allocate a major and return

  87 * its number.

  88 *

  89 * If major > 0 this function will attempt to reserve the passed range of

  90 * minors and will return zero on success.

  91 *

  92 * Returns a -ve errno on failure.

  93 */

  94static struct char_device_struct *

  95__register_chrdev_region(unsigned int major, unsigned int baseminor,

  96                           int minorct, const char *name)

  97{

  98        struct char_device_struct *cd, **cp;

  99        int ret = 0;

 100        int i;

 101

 102        cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);

 103        if (cd == NULL)

 104                return ERR_PTR(-ENOMEM);

 105

 106        mutex_lock(&chrdevs_lock);

 107

 108        /* temporary */

 109        if (major == 0) {

 110                for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) {

 111                        if (chrdevs[i] == NULL)

 112                                break;

 113                }

 114

 115                if (i == 0) {

 116                        ret = -EBUSY;

 117                        goto out;

 118                }

 119                major = i;

 120                ret = major;

 121        }

 122

 123        cd->major = major;

 124        cd->baseminor = baseminor;

 125        cd->minorct = minorct;

 126        strlcpy(cd->name, name, sizeof(cd->name));

 127

 128        i = major_to_index(major);

 129

 130        for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)

 131                if ((*cp)->major > major ||

 132                    ((*cp)->major == major &&

 133                     (((*cp)->baseminor >= baseminor) ||

 134                      ((*cp)->baseminor + (*cp)->minorct > baseminor))))

 135                        break;

 136

 137        /* Check for overlapping minor ranges.  */

 138        if (*cp && (*cp)->major == major) {

 139                int old_min = (*cp)->baseminor;

 140                int old_max = (*cp)->baseminor + (*cp)->minorct - 1;

 141                int new_min = baseminor;

 142                int new_max = baseminor + minorct - 1;

 143

 144                /* New driver overlaps from the left.  */

 145                if (new_max >= old_min && new_max <= old_max) {

 146                        ret = -EBUSY;

 147                        goto out;

 148                }

 149

 150                /* New driver overlaps from the right.  */

 151                if (new_min <= old_max && new_min >= old_min) {

 152                        ret = -EBUSY;

 153                        goto out;

 154                }

 155        }

 156

 157        cd->next = *cp;

 158        *cp = cd;

 159        mutex_unlock(&chrdevs_lock);

 160        return cd;

 161out:

 162        mutex_unlock(&chrdevs_lock);

 163        kfree(cd);

 164        return ERR_PTR(ret);

 165}

  • 1
  • 2
  • 3
  • 下一页

相关内容