openstack 网络架构 nova-network + neutron,openstackneutron


openstack网络架构(nova-network/neutron)

openstack网络体系中,网络技术没有创新,但用到的技术点非常庞杂,包括bridge、vlan、gre、vxlan、ovs、openflow、sdn、iptables等,当然这里不会做具体技术介绍,概述技术,主要将其与openstack的结合点做详细分析。

nova-network网络架构

在nova-network中,其网络模型包括flat、dhcp flat、vlan,用到的技术主要有bridge、vlan,

dhcp flat多网络节点架构图如下所示:

优点:结构简单,稳定

缺点:所有租户都在一个水平面上,租户之间没有隔离,由于所有租户都在一个子网内,当大规模部署后,其广播风暴将会是不小的负面因素,至于这种模型其vm的上限,笔者还没有条件测试。

vlan架构如下所示

  • 为租户创建独占的bridge
  • 创建vlan接口vlan100,依据802.1q协议打vlanid
  • Dnsmasq监听网桥网关,负责fixedip的分配
  • switch port设定为chunk mode
  • eth0负责vm之间的数据通信,eth1负责外网访问

vlan模型:

优点:租户有隔离

缺点:需要物理交换机chunk口的支持,实际部署时比较复杂,vlan id个数为4094个,也就是最多4094个子网租户,不适用于公有云。

结论:相比于neutron网络,虽说没有neutron那么多的功能插件,仅有bridge,但是其稳定性已得到大多数用户的验证,对于小规模的私有云(1千台虚机的规模),nova-network是可以考虑的,目前线上部署的环境也是nova-network。

参考资料:

https://www.mirantis.com/blog/openstack-networking-flatmanager-and-flatdhcpmanager/

https://www.mirantis.com/blog/vlanmanager-network-flow-analysis/

https://www.mirantis.com/blog/openstack-networking-vlanmanager/

http://blog.csdn.net/hilyoo/article/details/7721401

http://blog.csdn.net/beginning1126/article/details/39371757

neutron网络架构

neutron网络体系相比于nova-network要复杂的多,用到的技术点也非常庞杂,在介绍网络架构之前,有必要概述下gre、vxlan、ovs、openflow、sdn技术点。

上面阐述过,vlan技术存在vlan id个数限制4094,公有云租户肯定不止4094,二层技术,只能部署在一个局域网内,无法实现跨机房部署。为了突破这俩个限制,增加了gre和vxlan隧道技术。

GRE:

跨机房部署:3层隧道技术,在原来小网ip头前面加入大网ip头和gre头,大网ip头里面的ip是公网ip;

segment id:而gre头里面最重要的字段应该是4字节key值(segment id),充当了vlan技术里面的vlan id,隔离租户的作用,由于是4个字节,已经不受4094 vlan id限制。下图是gre典型应用vpn。

当然gre也有其缺点,

VXLAN:

针对vlan和gre的第一个缺点,业界提出了vxlan技术,下图分别是vxlan头结构和通信流程。

结论:

参考资料:

http://blog.csdn.net/freezgw1985/article/details/16354897

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729383.html

openflow


openflow主要分为controller和flow table,并且其通信遵循openflow协议。增加了controller点,openflow switch仅仅根据flow table设定好的规则对数据做路由或丢弃等操作,而整个系统的大脑部分在controller,所有flow table的路由规则、处理方法都是从controller得到。

Openflow的优点:

Openflow问题:

实验室截取的流表实例:

参考资料:

http://www.ibm.com/developerworks/cn/cloud/library/1303_silei_openflow/

http://mytrix.me/2014/04/dive-into-openstack-neutron-on-compute-node/

http://www.kankanews.com/ICkengine/archives/101651.shtml

OVS:

相比于Linux bridgeovs有以下好处

参考资料:

http://blog.csdn.net/canxinghen/article/details/39344797

http://bengo.blog.51cto.com/4504843/791213                    

http://www.cloudstack-china.org/2013/09/2484.html

到此为止,关于gre、vxlan、openflow、ovs基本情况基本介绍完了,下面将是应用这些技术介绍neutron网络架构体系。

neutron体系结构组成

Control node:neutronserver(api/neutron-*-plugin)

Network node:neutron-*-plugin-agent/l3-agent/dhcp-agent

Computer node:neutron-*-plugin-agent

在neutron体系中,应用最多的两个插件就是Linux bridge和ovs,笔者在实验室分别搭建过Linux bridge+vxlan和ovs+vxlan。下面分别是从官网上截取的网络结构图,官网给出的是vlan的情况,其实和vxlan区别不大。

ovs+vxlan computer node and network node

网络架构图

是不是看到这2张图就有些晕了,这么多个bridge、tap设备都是做什么用的,理解这些设备其实并不难,redhat有篇文章写的非常详细,大家看看就非常明白了,https://openstack.redhat.com/Networking_in_too_much_detail,官方给出的图是vlan拓扑,其实只要将图中的vlan device改成vxlan device就可以,不妨碍表述结构。

在ovs结构中,如果网络拓扑是vxlan或gre,则有两个bridge,分别是br-int和br-tun(上图由于是vlan环境,没有br-tun,而是br-eth1),br-int叫集成网桥,用于连接起上方的各个设备(包括vm、dhcp-agent、l3-agent),br-tun叫隧道网桥,隧道既可以是gre,也可以是vxlan,br-tun负责在原始报文中加入gre或vxlan报文头。相当于软件实现了vtep设备(对于vxlan而言),

flow table

这里值得一提的是network node br-tun中的flow table,如下图所示,对于flow table的各个表项大家可以参考文章http://mytrix.me/2014/04/dive-into-openstack-neutron-on-compute-node/,这里不做过多阐述。

作者实验室搭建了1个network node和2个computer node,port 1对应网络节点的br-int,port 2、3对应2个computer node,可以看出,当由computer node来的数据包(port 2、3),改完vlan标签之后,要先通过自学习的过程(对应table 10),然后输出给port 1,学习的结果就是table 20,table 20将vlan id和目标vm的mac地址作为匹配项,匹配上之后。输出给port 2、3。

通信流程

同一租户不同host vm fixed ip通信流程如下图所示,如果通过fixed ip通信,不需要经过network node,通过br-tun加上vxlan标签则可以实现不同host上的vm通信。

不同租户不同host vm floating ip通信流程如下图所示,如果是通过floating ip进行通信,需要经过network node做dnat、snat、路由,为什么要通过network node呢?原因是目标ip地址是floating ip,和vm2 fixed ip不在一个网段,所以其对ip包的处理需要将包传递给租户2的默认网关mac4/ip4,传给给默认网关后需要做dnat转换,然后路由给租户1的默认网关mac3/ip3,再做snat转换,最后将包传递给vm1,注意包传递过程中,其内外层mac地址和ip地址的转换。


Linux bridge + vxlan computer node and network node

有了ovs的基础,理解bridge的结构就简单多了,但是作者在用rdo搭建bridge + vxlan的环境时,遇到很多问题:

======================华丽的分割线==========================================

结论

nova-network和neutron的选择flat模式有广播风暴的风险,不适于大规模部署(一千台vm),vlan需要配置物理交换机chunk,neutron由于gre和vxlan的引入,可以解决广播风暴,又不需要配置物理交换机chunk口,但是neutron目前最大的问题是稳定性,而且iec house版本不支持network muti-host部署(据说juno版本支持,接下来搭建个环境研究一下),所以在解决其稳定性和network node ha问题之前也不适用于线上环境。

网络拓扑flat、vlan、gre、vxlan的选择:vxlan解决了vlan id个数限制和跨机房互通问题,同时解决了gre点对点隧道个数过多问题,同时实现了大2层网络,可用于vm在机房之间的的无缝迁移,所以vxlan的选择上没有太多质疑,唯一的缺点就是vxlan增加了ip头部大小,需要降低vm的mtu值,传输效率上会略有下降。

Linux bridge和ovs的选择:这两种插件是目前业界使用最多的,非官方统计(摘自http://wenku.it168.com/d_001350820.shtml)二者在众多插件使用份额是,Linux bridge31%、ovs 39%,ovs的优点就是可以针对每个vm做流量限制、流量监控、数据包分析,但是业界普遍认为其性能是个大问题(这点作者正在实验室搭建环境,测试二者性能,希望后续能给出量化指标),所以二者的选择上,还需大量测试才能决定。

目前SDN虽说很火,并且很多公司提供了SND物理交换机,但是其仍处于研究阶段,于大规模部署还很长的路要走,neutron的稳定性还需要大量测试和修改,也有很长的路要走。


相关内容

    暂无相关文章