相似性度量方法,相似性度量


http://blog.csdn.net/pipisorry/article/details/45651315

在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如 K 最近邻(KNN)和 K 均值(K-Means)等等。根据数据特性的不同,可以采用不同的度量方法。一般而言,定义一个距离函数 d(x,y), 需要满足下面几个准则:

1) d(x,x) = 0                    // 到自己的距离为0
2) d(x,y) >= 0                  // 距离非负
3) d(x,y) = d(y,x)                   // 对称性: 如果 A 到 B 距离是 a,那么 B 到 A 的距离也应该是 a
4) d(x,k)+ d(k,y) >= d(x,y)    // 三角形法则: (两边之和大于第三边)

基础知识

熵 (信息论)/信息熵

在信息论中,是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量。这里, 消息代表来自分布或数据流中的事件、样本或特征。(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。)

来自信源的另一个特征是样本的概率分布。这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息。在信息世界,熵越高,则能传输越多的信息,熵越低,则意味着传输的信息越少。由于一些其他的原因(下面会有解释),把信息(熵)定义为概率分布的对数的相反数是有道理的。

事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵)。采用概率分布的对数作为信息的量度的原因是其可加性。例如,投掷一次硬币提供了1 Sh的信息,而掷 m 次就为 m 位。更一般地,你需要用 log2(n) 位来表示一个可以取 n 个值的变量。

在1948年,克劳德·艾尔伍德·香农将热力学的熵,引入到信息论,因此它又被称为香农熵。

信息熵公式的来源

假设一篇文章的标题叫做“黑洞到底吃什么”,包含词语分别是 {黑洞, 到底, 吃什么}, 我们现在要根据一个词语推测这篇文章的类别。哪个词语给予我们的信息最多?很容易就知道是“黑洞”,因为“黑洞”这个词语在所有的文档中出现的概率太低啦,一旦出现,就表明这篇文章很可能是在讲科普知识。而其他两个词语“到底”和“吃什么”出现的概率很高,给予我们的信息反而越少。

如何用一个函数 h(x) 表示词语给予的信息量呢?第一,肯定是与 p(x) 相关,并且是负相关。第二,假设 x 和 y 是独立的(黑洞和宇宙不相互独立,谈到黑洞必然会说宇宙),即 p(x,y) = p(x)p(y), 那么获得的信息也是叠加的,即 h(x, y) = h(x) + h(y)。满足这两个条件的函数肯定是负对数形式:

对假设一个发送者要将随机变量 X 产生的一长串随机值传送给接收者, 接受者获得的平均信息量就是求它的数学期望:

这就是熵的概念。另外一个重要特点是,熵的大小与字符平均最短编码长度是一样的(shannon)。设有一个未知的分布 p(x), 而 q(x) 是我们所获得的一个对 p(x) 的近似,按照 q(x) 对该随机变量的各个值进行编码,平均长度比按照真实分布的 p(x) 进行编码要额外长一些,多出来的长度这就是 KL 散度(之所以不说距离,是因为不满足对称性和三角形法则),即:

熵的计算

如果有一枚理想的硬币,其出现正面和反面的机会相等,则抛硬币事件的熵等于其能够达到的最大值。我们无法知道下一个硬币抛掷的结果是什么,因此每一次抛硬币都是不可预测的。

因此,使用一枚正常硬币进行若干次抛掷,这个事件的熵是一比特,因为结果不外乎两个——正面或者反面,可以表示为0, 1编码,而且两个结果彼此之间相互独立。若进行n次独立实验,则熵为n,因为可以用长度为n比特流表示。

但是如果一枚硬币的两面完全相同,那个这个系列抛硬币事件的熵等于零,因为结果能被准确预测。现实世界里,我们收集到的数据的熵介于上面两种情况之间。

另一个稍微复杂的例子是假设一个随机变量X,取三种可能值\begin{smallmatrix} x_1, x_2, x_3 \end{smallmatrix},概率分别为\begin{smallmatrix} \frac{1}{2}, \frac{1}{4}, \frac{1}{4} \end{smallmatrix},那么编码平均比特长度是:\begin{smallmatrix} \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2 = \frac{3}{2} \end{smallmatrix}。其熵为3/2。

因此实际是对随机变量的比特量和顺次发生概率相乘再总和的数学期望

定义

依据Boltzmann's H-theorem,香农把随机变量 X 的熵值 Η(希腊字母Eta)定义如下,其值域为 {x1, ...,xn}:

\Eta(X) = \mathrm{E}[\mathrm{I}(X)] = \mathrm{E}[-\ln(\mathrm{P}(X))].

其中, P 为 X概率质量函数(probability mass function),E 为期望函数,而 I(X) 是X 的信息量(又称为自信息)。I(X) 本身是个随机变数。

当取自有限的样本时,熵的公式可以表示为:

\Eta(X) = \sum_{i} {\mathrm{P}(x_i)\,\mathrm{I}(x_i)} = -\sum_{i} {\mathrm{P}(x_i) \log_b \mathrm{P}(x_i)},

熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底。在这里 b对数所使用的底,通常是 2, 自然常数 e,或是10。当b = 2,熵的单位是bit;当b = e,熵的单位是nat;而当b = 10,熵的单位是 Hart。

pi = 0时,对于一些i值,对应的被加数0 logb 0的值将会是0,这与极限一致。

\lim_{p\to0+}p\log p = 0.

还可以定义事件 X 与 Y 分别取 xi 和 yj 时的条件熵

\Eta(X|Y)=\sum_{i,j}p(x_{i},y_{j})\log\frac{p(y_{j})}{p(x_{i},y_{j})}

其中 p(xiyj) 为 X = xi 且 Y = yj 时的概率。这个量应当理解为你知道Y 的值前提下随机变量 X 的随机性的量。

和热力学熵的联系

物理学家和化学家对一个系统自发地从初始状态向前演进过程中,遵循热力学第二定律而发生的熵的变化更感兴趣。在传统热力学中,熵被定义为对系统的宏观测定,并没有涉及概率分布,而概率分布是信息熵的核心定义。

[http://zh.wikipedia.org]



1. cosine余弦相似度/向量内积

1. 两个向量间的余弦值可以很容易地通过使用欧几里得点积和量级公式推导:

\mathbf{a}\cdot\mathbf{b}=\left\|\mathbf{a}\right\|\left\|\mathbf{b}\right\|\cos\theta

鉴于两个向量的属性, AB的余弦相似性θ用一个点积形式来表示其大小,如下所示:

\text{similarity} = \cos(\theta) = {A \cdot B \over \|A\| \|B\|} = \frac{ \sum\limits_{i=1}^{n}{A_i \times B_i} }{ \sqrt{\sum\limits_{i=1}^{n}{(A_i)^2}} \times \sqrt{\sum\limits_{i=1}^{n}{(B_i)^2}} }

产生的相似性范围从-1到1:-1意味着两个向量指向的方向正好截然相反,1表示它们的指向是完全相同的,0通常表示它们之间是独立的,而在这之间的值则表示中度的相似性或相异性。 对于文本匹配,属性向量AB 通常是文档中的词频向量。余弦相似性,可以被看作是一个规范比较文件长度的方法。 在信息检索的情况下,由于一个词的频率(TF-IDF权)不能为负数,所以这两个文档的余弦相似性范围从0到1。并且,两个词的频率向量之间的角度不能大于90°。

[余弦相似性]

2. 向量内积是线性代数里最为常见的计算,实际上它还是一种有效并且直观的相似性测量手段。向量内积的定义如下:

直观的解释是:如果 x 高的地方 y 也比较高, x 低的地方 y 也比较低,那么整体的内积是偏大的,也就是说 x 和 y 是相似的。举个例子,在一段长的序列信号 A 中寻找哪一段与短序列信号 a 最匹配,只需要将 a 从 A 信号开头逐个向后平移,每次平移做一次内积,内积最大的相似度最大。信号处理中 DFT 和 DCT 也是基于这种内积运算计算出不同频域内的信号组分(DFT 和 DCT 是正交标准基,也可以看做投影)。向量和信号都是离散值,如果是连续的函数值,比如求区间[-1, 1] 两个函数之间的相似度,同样也可以得到(系数)组分,这种方法可以应用于多项式逼近连续函数,也可以用到连续函数逼近离散样本点(最小二乘问题,OLS coefficients)中,扯得有点远了- -!。

向量内积的结果是没有界限的,一种解决办法是除以长度之后再求内积,这就是应用十分广泛的余弦相似度(Cosine similarity):

余弦相似度与向量的幅值无关,只与向量的方向相关,在文档相似度(TF-IDF)和图片相似性(histogram)计算上都有它的身影。需要注意一点的是,余弦相似度受到向量的平移影响,上式如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就是下面要说的皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。不过,一般我们在谈论相关系数的时候,将 x 与 y 对应位置的两个数值看作一个样本点,皮尔逊系数用来表示这些样本点分布的相关性。

由于皮尔逊系数具有的良好性质,在各个领域都应用广泛,例如,在推荐系统根据为某一用户查找喜好相似的用户,进而提供推荐,优点是可以不受每个用户评分标准不同和观看影片数量不一样的影响。



2. kl散度/相对熵/kl距离

1. 相对熵(relative entropy)又称为KL散度Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。

KL散度是两个概率分布P和Q差别的非对称性的度量(designed to measure the difference between probability distributions)。 KL散度是用来 度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

定义

对于离散随机变量,其概率分布PQ的KL散度可按下式定义为

D_{\mathrm{KL}}(P\|Q) = \sum_i P(i) \ln \frac{P(i)}{Q(i)}. \!

即按概率P求得的PQ的对数差的平均值。KL散度仅当概率P和Q各自总和均为1,且对于任何i皆满足Q(i)>0P(i)>0时,才有定义。式中出现0 \ln 0的情况,其值按0处理。

特性

1. 相对熵的值为非负数:

D_{\mathrm{KL}}(P\|Q) \geq 0, \,

由吉布斯不等式(en:Gibbs' inequality)可知,当且仅当P = QDKL(P||Q)为0

2. 尽管从直觉上KL散度是个度量或距离函数, 但是它实际上并不是一个真正的度量或距离。因为KL散度不具有对称性:从分布PQ的距离(或度量)通常并不等于从QP的距离(或度量)。

D_{\mathrm{KL}}(P\|Q) \neq D_{\mathrm{KL}}(Q\|P)

L散度是不对称的,当然,如果希望把它变对称,

Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2

[KL散度]

[相对熵]

2. 概率分布之间的距离

实际上两个概率分布之间的距离是可以测量的。在统计学里面经常需要测量两组样本分布之间的距离,进而判断出它们是否出自同一个 population,常见的方法有卡方检验(Chi-Square)和 KL 散度( KL-Divergence),下面说一说 KL 散度吧。

先了解一下前面的基础知识[信息熵-信息熵的来源],而KL 散度又叫相对熵(relative entropy)。了解机器学习的童鞋应该都知道,在 Softmax 回归(或者 Logistic 回归),最后的输出节点上的值表示这个样本分到该类的概率,这就是一个概率分布。对于一个带有标签的样本,我们期望的概率分布是:分到标签类的概率是 1, 其他类概率是 0。但是理想很丰满,现实很骨感,我们不可能得到完美的概率输出,能做的就是尽量减小总样本的 KL 散度之和(目标函数)。这就是 Softmax 回归或者 Logistic 回归中 Cost function 的优化过程啦。(PS:因为概率和为 1,一般的 logistic 二分类的图只画了一个输出节点,隐藏了另外一个)

[KL散度(Kullback-Leibler_divergence)]

kl散度的python+scipy实现

{计算topic_word分布矩阵所有topic_word分布两两之间的相似度-kl散度}

1.

# 方法1(pdist只能计算对称kl散度)
topic_similar_mat = spatial.distance.pdist(tw_dist_ndaray,
                                           metric=lambda P, Q: ((sum(kl_div(P, Q)) + sum(kl_div(Q, P))) / 2))
2.
def kl(P, Q):
    '''
    计算两个ndarray的kl散度
    KL散度仅当概率P和Q各自总和均为1,且对于任何i皆满足Q(i)>0及P(i)>0时,才有定义
    '''
    return sum(P * log(P / Q)) if (P > 0).all() and (Q > 0).all() else None
    # return sum(where((P > 0).all() and (Q > 0).all(), P * log(P / Q), None), axis=0)

#方法2(对称kl散度,自定义kl函数)
topic_similar_mat = spatial.distance.pdist(tw_dist_ndaray,
                                               metric=lambda P, Q: ((kl(P, Q) + kl(Q, P)) / 2))
3.
# 方法3(非对称kl散度)
topic_similar_mat = zeros([len(tw_dist_ndaray), len(tw_dist_ndaray)])
for i_id, i in enumerate(tw_dist_ndaray):
    for j_id, j in enumerate(tw_dist_ndaray):
        if i_id != j_id:
            topic_similar_mat[i_id, j_id] = stats.entropy(tw_dist_ndaray[i_id], tw_dist_ndaray[j_id])

4.

            topic_similar_mat[i_id, j_id] = sum(kl_div(tw_dist_ndaray[i_id], tw_dist_ndaray[j_id]))
Note

1. 计算出的结果自己和自己的kl散度为0,为了排序计算与别人的相似度应该将对角线中的元素改为max

topic_similar_mat = spatial.distance.squareform(topic_similar_mat)
max_dist = topic_similar_mat.max()
for i in range(len(topic_similar_mat)):
    topic_similar_mat[i, i] = max_dist+1
print(topic_similar_mat)
2. 非对称kl散度不是对称的,而用pdist计算出的topic_similar_mat一定是对称的,因为pdist只计算上三角,所以使用pdist必须要用对称的kl散度

[Computation of Kullback-Leibler (KL) distance between text-documents using numpy]

[http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.entropy.html]



3. 闵可夫斯基距离

闵可夫斯基距离(Minkowski distance)是衡量数值点之间距离的一种非常常见的方法,假设数值点 P 和 Q 坐标如下:

那么,闵可夫斯基距离定义为:

该距离最常用的 p 是 2 和 1, 前者是欧几里得距离(Euclidean distance),后者是曼哈顿距离(Manhattan distance)。假设在曼哈顿街区乘坐出租车从 P 点到 Q 点,白色表示高楼大厦,灰色表示街道:

绿色的斜线表示欧几里得距离,在现实中是不可能的。其他三条折线表示了曼哈顿距离,这三条折线的长度是相等的。

当 p 趋近于无穷大时,闵可夫斯基距离转化成切比雪夫距离(Chebyshev distance):

我们知道平面上到原点欧几里得距离(p = 2)为 1 的点所组成的形状是一个圆,当 p 取其他数值的时候呢?

注意,当 p < 1 时,闵可夫斯基距离不再符合三角形法则,举个例子:当 p < 1, (0,0) 到 (1,1) 的距离等于 (1+1)^{1/p} > 2, 而 (0,1) 到这两个点的距离都是 1。

闵可夫斯基距离比较直观,但是它与数据的分布无关,具有一定的局限性,如果 x 方向的幅值远远大于 y 方向的值,这个距离公式就会过度放大 x 维度的作用。所以,在计算距离之前,我们可能还需要对数据进行 z-transform 处理,即减去均值,除以标准差:

 : 该维度上的均值
 : 该维度上的标准差

可以看到,上述处理开始体现数据的统计特性了。这种方法在假设数据各个维度不相关的情况下利用数据分布的特性计算出不同的距离。如果维度相互之间数据相关(例如:身高较高的信息很有可能会带来体重较重的信息,因为两者是有关联的),这时候就要用到马氏距离(Mahalanobis distance)了。

 

4. 马氏距离

考虑下面这张图,椭圆表示等高线,从欧几里得的距离来算,绿黑距离大于红黑距离,但是从马氏距离,结果恰好相反:

马氏距离实际上是利用 Cholesky transformation 来消除不同维度之间的相关性尺度不同的性质。假设样本点(列向量)之间的协方差对称矩阵是  , 通过 Cholesky Decomposition(实际上是对称矩阵 LU 分解的一种特殊形式,可参考之前的博客)可以转化为下三角矩阵和上三角矩阵的乘积:  。消除不同维度之间的相关性和尺度不同,只需要对样本点 x 做如下处理: 。处理之后的欧几里得距离就是原样本的马氏距离:为了书写方便,这里求马氏距离的平方):

下图蓝色表示原样本点的分布,两颗红星坐标分别是(3, 3),(2, -2):

由于 x, y 方向的尺度不同,不能单纯用欧几里得的方法测量它们到原点的距离。并且,由于 x 和 y 是相关的(大致可以看出斜向右上),也不能简单地在 x 和 y 方向上分别减去均值,除以标准差。最恰当的方法是对原始数据进行 Cholesky 变换,即求马氏距离(可以看到,右边的红星离原点较近):

将上面两个图的绘制代码和求马氏距离的代码贴在这里,以备以后查阅:

 1 # -*- coding=utf-8 -*-
 2 
 3 # code related at: http://www.cnblogs.com/daniel-D/
 4 
 5 import numpy as np
 6 import pylab as pl
 7 import scipy.spatial.distance as dist
 8 
 9 
10 def plotSamples(x, y, z=None):
11 
12     stars = np.matrix([[3., -2., 0.], [3., 2., 0.]])
13     if z is not None:
14         x, y = z * np.matrix([x, y])
15         stars = z * stars
16 
17     pl.scatter(x, y, s=10)    # 画 gaussian 随机点
18     pl.scatter(np.array(stars[0]), np.array(stars[1]), s=200, marker='*', color='r')  # 画三个指定点
19     pl.axhline(linewidth=2, color='g') # 画 x 轴
20     pl.axvline(linewidth=2, color='g')  # 画 y 轴
21 
22     pl.axis('equal')
23     pl.axis([-5, 5, -5, 5])
24     pl.show()
25 
26 
27 # 产生高斯分布的随机点
28 mean = [0, 0]      # 平均值
29 cov = [[2, 1], [1, 2]]   # 协方差
30 x, y = np.random.multivariate_normal(mean, cov, 1000).T
31 plotSamples(x, y)
32 
33 covMat = np.matrix(np.cov(x, y))    # 求 x 与 y 的协方差矩阵
34 Z = np.linalg.cholesky(covMat).I  # 仿射矩阵
35 plotSamples(x, y, Z)
36 
37 # 求马氏距离 
38 print '\n到原点的马氏距离分别是:'
39 print dist.mahalanobis([0,0], [3,3], covMat.I), dist.mahalanobis([0,0], [-2,2], covMat.I)
40 
41 # 求变换后的欧几里得距离
42 dots = (Z * np.matrix([[3, -2, 0], [3, 2, 0]])).T
43 print '\n变换后到原点的欧几里得距离分别是:'
44 print dist.minkowski([0, 0], np.array(dots[0]), 2), dist.minkowski([0, 0], np.array(dots[1]), 2)
马氏距离的变换和 PCA 分解的白化处理颇有异曲同工之妙,不同之处在于:就二维来看,PCA 是将数据主成分旋转到 x 轴(正交矩阵的酉变换),再在尺度上缩放(对角矩阵),实现尺度相同。而马氏距离的 L逆矩阵是一个下三角,先在 x 和 y 方向进行缩放,再在 y 方向进行错切(想象矩形变平行四边形),总体来说是一个没有旋转的仿射变换。

 


 

5. 汉明距离-分类数据点间的距离

汉明距离(Hamming distance)是指,两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。举个维基百科上的例子:

还可以用简单的匹配系数来表示两点之间的相似度——匹配字符数/总字符数。

在一些情况下,某些特定的值相等并不能代表什么。举个例子,用 1 表示用户看过该电影,用 0 表示用户没有看过,那么用户看电影的的信息就可用 0,1 表示成一个序列。考虑到电影基数非常庞大,用户看过的电影只占其中非常小的一部分,如果两个用户都没有看过某一部电影(两个都是 0),并不能说明两者相似。反而言之,如果两个用户都看过某一部电影(序列中都是 1),则说明用户有很大的相似度。在这个例子中,序列中等于 1 所占的权重应该远远大于 0 的权重,这就引出下面要说的杰卡德相似系数(Jaccard similarity)。

在上面的例子中,用 M11 表示两个用户都看过的电影数目,M10 表示用户 A 看过,用户 B 没看过的电影数目,M01 表示用户 A 没看过,用户 B 看过的电影数目,M00 表示两个用户都没有看过的电影数目。Jaccard 相似性系数可以表示为:

Jaccard similarity 还可以用集合的公式来表达,这里就不多说了。

如果分类数值点是用树形结构来表示的,它们的相似性可以用相同路径的长度来表示,比如,“/product/spot/ballgame/basketball” 离“product/spot/ballgame/soccer/shoes” 的距离小于到 "/product/luxury/handbags" 的距离,以为前者相同父节点路径更长。

 

6. 编辑距离-序列之间的距离

上一小节我们知道,汉明距离可以度量两个长度相同的字符串之间的相似度,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离(Edit distance, Levenshtein distance)等算法。编辑距离是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离求的是最少编辑次数,这是一个动态规划的问题,有兴趣的同学可以自己研究研究。

时间序列是序列之间距离的另外一个例子。DTW 距离(Dynamic Time Warp)是序列信号在时间或者速度上不匹配的时候一种衡量相似度的方法。神马意思?举个例子,两份原本一样声音样本A、B都说了“你好”,A在时间上发生了扭曲,“你”这个音延长了几秒。最后A:“你~~~好”,B:“你好”。DTW正是这样一种可以用来匹配A、B之间的最短距离的算法。

DTW 距离在保持信号先后顺序的限制下对时间信号进行“膨胀”或者“收缩”,找到最优的匹配,与编辑距离相似,这其实也是一个动态规划的问题:

实现代码(转自 McKelvin's Blog ):

#!/usr/bin/python2
# -*- coding:UTF-8 -*-
# code related at: http://blog.mckelv.in/articles/1453.html
 
import sys
 
distance = lambda a,b : 0 if a==b else 1
 
def dtw(sa,sb):
    '''
    >>>dtw(u"干啦今今今今今天天气气气气气好好好好啊啊啊", u"今天天气好好啊")
    2
    '''
    MAX_COST = 1<<32
    #初始化一个len(sb) 行(i),len(sa)列(j)的二维矩阵
    len_sa = len(sa)
    len_sb = len(sb)
    # BUG:这样是错误的(浅拷贝): dtw_array = [[MAX_COST]*len(sa)]*len(sb)
    dtw_array = [[MAX_COST for i in range(len_sa)] for j in range(len_sb)]
    dtw_array[0][0] = distance(sa[0],sb[0])
    for i in xrange(0, len_sb):
        for j in xrange(0, len_sa):
            if i+j==0:
                continue
            nb = []
            if i > 0: nb.append(dtw_array[i-1][j])
            if j > 0: nb.append(dtw_array[i][j-1])
            if i > 0 and j > 0: nb.append(dtw_array[i-1][j-1])
            min_route = min(nb)
            cost = distance(sa[j],sb[i])
            dtw_array[i][j] = cost + min_route
    return dtw_array[len_sb-1][len_sa-1]
 
 
def main(argv):
    s1 = u'干啦今今今今今天天气气气气气好好好好啊啊啊'
    s2 = u'今天天气好好啊'
    d = dtw(s1, s2)
    print d
    return 0
 
if __name__ == '__main__':
    sys.exit(main(sys.argv))


其它方法:

卡方检验 Chi-Square

衡量 categorical attributes 相关性的 mutual information

Spearman's rank coefficient

Earth Mover's Distance

SimRank 迭代算法等。

[漫谈:机器学习中距离和相似性度量方法]

from:http://blog.csdn.net/pipisorry/article/details/45651315

ref:如何计算两个文档的相似度

距离和相似性度量

Machine Learning: Measuring Similarity and Distance

What is Mahalanobis distance?

Cosine similarity, Pearson correlation, and OLS coefficients

机器学习中的相似性度量

动态时间归整 | DTW | Dynamic Time Warping


相关内容

    暂无相关文章